Ambient Science: Click the Volume and issue number for Complete Article

Location where to get the Complete Article --> Ambient Science: Vol 3, No 2 (2016): 22-29

ISSN- 2348-5191 (Print version); 2348-8980 (Online)

Preprocessing and Optimization of Smooth Data-driven Model for Emergency Conditions Against Air Pollution

Ali Ardalan1, H. Mohammadi, A. Massah Bavani, Kazem Naddafi, M.T. Talebian


Magnitudes of the air pollution depend on various variables. Preprocessing and optimisation processes are necessary to discover the complexity of the relationship of the data for more accurate and efficient predictions. These techniques help to clean the datasets and to find the best structure of the smooth data model. The Gamma test (GT) and Genetic Algorithm (GA) are practical tools which can be applied for preprocessing and optimising data models. Regarding building a smooth data model, the developed artificial neural networks are functional optimisation strategies which are suitable for ANN training. Moreover, local linear regression (LLR) and dynamic local linear regression (DLLR) models are effective due to the high density of our normalised dataset. In this regard, we developed a process to construct a smooth data model to support environmental decision making in air pollution emergency conditions. The main objective of this work was to set an appropriate algorithm by preprocessing and optimising a set of the data model for developing smooth data-driven models which could play a significant role in early warning systems in regard to the human health. The data sets included the meteorological and air pollutant variables as inputs/predictors and emergency medical service clients as outputs. The GT and GA were applied to analyse and optimise the input variables. Three types of ANNS (ANN1, ANN2, and ANN3), (LLR), and (DLLR) techniques were used to establish the models. Finally, a smooth data model was constructed and evaluated.


  • Anderson, H. R. (2009): Air pollution and mortality: A history. Atmos., Environ., 43(1): 142-152.
  • Asagha, E.N., Udo, S.O. & Echi, I.M. (2014): Modeling and Simulation of Global Solar Radiation in Warri, Nigeria Using Gamma Test and Artificial Neural Network Algorithms. Int. J. Innov. Res. Develop., 3(6):366-374.
  • Atash, F. (2007): The deterioration of urban environments in developing countries: Mitigating the air pollution crisis in Tehran, Iran. Cities, 24(6): 399-409.
  • Bernard, S.M., Samet, J. M., Grambsch, A., Ebi, K.L. & Romieu, I. (2001): The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspec., 109(S- 2): 199-209.
  • Bibi, H., Nutman, A. Shoseyov, D., Shalom, M., Peled, R., Kivity, S. Nutman, J. (2002): Prediction of emergency department visits for respiratory symptoms using an artificial neural network. Chest Journal., 122(5): 1627-1632.
  • Brunekreef, B. & Holgate, S.T. (2002): Air pollution and health. The Lancet, 360(9341): 1233-1242.
  • de Gennaro, G., Trizio, L., Di Gilio, A., Pey, J., Pérez, N., Cusack, M., Alastuey, A. & Querol, X. (2013): Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. Sci.Total Environ., 463-464:875-883.
  • Demuth, H. & Beale, M. (2002): Neural network toolbox for use with MATLAB in The MathWorks, Inc. 4th.
  • Díaz-Robles, L.A., Ortega, J.C., Fu, J. S., Reed, G.D., Chow, J.C., Watson, J.G. & Moncada-Herrera, J.A. (2008): A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmosph. Environ., 42(35): 8331-8340.
  • Durrant, P. J. (2001): A non-linear data analysis and modelling tool with applications to flood prediction. Doctor of Philosophy, Cardiff University.
  • Elliott, P., Shaddick, G. Wakefield, J.C., Hoogh, C.D. & Briggs, D.J. (2007): Long-term associations of outdoor air pollution with mortality in Great Britain. Thorax, 62(12):1088-1094.
  • Gardner, M. & Dorling, S. (1998): Artificial neural networks (the multilayer perceptron)a review of applications in the atmospheric sciences. Atmos. Environ., 32(14): 2627-2636.
  • Gasparrini, A. (2011). Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J. Statis. Software, 43(8): 1-20.
  • Gasparrini, A., Armstrong, B. Kenward, M.G. (2010): Distributed lag non-linear models. Statis. Med., 29(21): 2224-2234.
  • Goyal, P., Chan, A.T., Jaiswal, N. (2006): Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmos. Environ., 40(11): 2068-2077.
  • Grell, G. & Baklanov, A. (2011): Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmos.Environ., 45(38): 6845-6851.
  • Grivas, G. & Chaloulakou, A. (2006): Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos.Environ., 40(7): 1216-1229.
  • Hoek, G., Beelen, R., de Hoogh, K. Vienneau, D., Gulliver, J., Fischer, P. & Briggs, D. (2008): A review of land-use regression models to assess spatial variation of outdoor air pollution." Atmos.Environ., 42(33): 7561-7578.
  • Holland, J.H. (1975): Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Oxford, England, U Michigan Press.
  • Inal, F. (2010): Artificial Neural Network Prediction of Tropospheric Ozone Concentrations in Istanbul, Turkey. CLEAN - Soil, Air, Water, 38(10): 897-908.
  • IITM (Indian Institute of Tropical Meteorology) (2015): " Extreme Weather & Pollution Events: Global& National", Environmental Information System Center, Acid Rain and Atmospheric Pollution(ARAP), Min. Environ., Forest & Climate Change, Govt. of India.
  • Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., Sahsuvaroglu, T., Morrison, J. & Giovis, C. (2004): A review and evaluation of intraurban air pollution exposure models. . J Expo. Anal. Environ. Epidemiol., 15(2): 185-204.
  • Jones, A. (1998): The WinGamma User Guide. Copyright: University of Wales, Cardiff 2001.
  • Liao, Z., Mao, X., Hannam, P.M. & Zhao, T. (2012): Adaptation methodology of CBR for environmental emergency preparedness system based on an Improved Genetic Algorithm. Expert Sys. Appl., 39(8): 7029-7040.
  • Liao, Z., Wang, B., Xia, X. & Hannam, P.M. (2012): Environmental emergency decision support system based on Artificial Neural Network. Safety Sci., 50(1): 150-163.
  • Moustris, K.P., Ziomas, I.C. & Paliatsos, A.G. (2009): 3-Day-Ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 Using Artificial Neural Networks in Athens, Greece. Water Air Soil Poll., 209(1-4): 29-43.
  • Naddafi, K., Hassanvand, M.S., Yunesian, M., Momeniha, F., Nabizadeh, R., Faridi S. & Gholampour, A. (2012): Health impact assessment of air pollution in megacity of Tehran, Iran. Iran. J. Environ. Health Sci. Eng., 9(1): 28.
  • Nemery, B., Hoet, P.H.M. & Nemmar, A. (2001): The Meuse Valley fog of 1930: an air pollution disaster. The Lancet, 357(9257): 704-708.
  • Noori, R., Karbassi, A.R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M.H., Farokhnia, A. & Gousheh, M.G. (2011): Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol., 401(3-4): 177-189.
  • Perez, P. & Gramsch, E. (2000): Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes. Atmos.Environ., 124(A): 22-27.
  • Pires, J.C., Goncalves, B., Azevedo, F.G., Carneiro, A.P. Rego, N., Assembleia, A.J., Lima, J.F., Silva, P.A., Alves, C.A. & Martins, F.G. (2012): Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting. Environ. Sci. Pollut. Res. Int., 19(8): 3228-3234.
  • Malhotra, R., Singh, S. & Singh Y. (2011): Genetic Algorithms: Concepts, Design for Optimization of Process Controllers. Canad. Centre Sci.Edu., 4(2): 16.
  • Sofianopoulou, E., Rushton, S.P., Diggle, P.J. & Pless-Mulloli, T. (2013): Association between respiratory prescribing, air pollution and deprivation, in primary health care. J. Public Health, 35(4): 502-509.
  • Solaiman, T.A., Coulibaly, P. & Kanaroglou, P. (2008): Ground-level ozone forecasting using data-driven methods. Air Qual. Atmos. Hlth., 1(4): 179-193.
  • Vanos, J.K., Cakmak, S., Kalkstein, L.S. & Yagouti, A. (2015): Association of weather and air pollution interactions on daily mortality in 12 Canadian cities. Air Qual. Atmos. Hlth., 8(3): 307-320.
  • Vo, N., Shi, H. & Szajman, J. (2013): Optimisation to ANN Inputs in Automated Property Valuation Model with Encog 3 and winGamma. Appl. Mech. Mat., 462-463: 1081-1086.
  • Zannetti, P. (2013): Air Pollution Modeling: Theories, computational methods and available software. Springer Science & Business Media.

  • DOI:10.21276/ambi.2016.03.2.Ta01/h3>

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
    Published by: National Cave Research and Protection Organization, India

    <Environmental Science+Zoology+Geology+Cave Science>AMBIENT SCIENCE